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Nonlinear independent component analysis is combined with
diffusion-map data analysis techniques to detect good observ-
ables in high-dimensional dynamic data. These detections are
achieved by integrating local principal component analysis of sim-
ulation bursts by using eigenvectors of a Markov matrix describing
anisotropic diffusion. The widely applicable procedure, a crucial
step in model reduction approaches, is illustrated on stochastic
chemical reaction network simulations.
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E volution of dynamical systems often occurs on two or more
time scales. A simple deterministic example is given by the

coupled system of ordinary differential equations (ODEs)

du/dt = α(u, v), [1]

dv/dt = τ−1β(u, v), [2]

with the small parameter 0 < τ � 1, where α(u, v) and β(u, v) are
O(1). For any given initial condition (u0, v0), already at t = O(τ)
the system approaches a new value (u0, v), where v satisfies the
asymptotic relation β(u0, v) = 0. Although the system is fully
described by two coordinates, the relation β(u, v) = 0 defines
a slow one-dimensional manifold which approximates the slow
dynamics for t � τ. In this example, it is clear that v is the fast
variable whereas u is the slow one. Projecting onto the slow man-
ifold here is rather easy: The fast foliation is simply “vertical”,
i.e. u = const. However, when we observe the system in terms of
the variables x = x(u, v) and y = y(u, v) which are unknown non-
linear functions of u and v, then the “observables” x and y have
both fast and slow dynamics. Projecting onto the slow manifold
becomes nontrivial, because the transformation from (x, y) to (u, v)
is unknown. Detecting the existence of an intrinsic slow manifold
under these conditions and projecting onto it are important in any
model reduction technique. Knowledge of a good parametrization
of such a slow manifold is a crucial component of the equation-free
framework for modeling and computation of complex/multiscale
systems (1–3).

Principal component analysis (PCA, also known as POD) (4–6)
has traditionally been used for data and model reduction in con-
texts ranging from meteorology (7) and transitional flows (8) to
protein folding (9, 10); in these contexts the PCA procedure is
used to detect good global reduced coordinates that best capture
the data variability. In recent years, diffusion maps (11–17) have
been used in a similar spirit to detect low-dimensional, nonlinear
manifolds underlying high-dimensional datasets.

In this paper, we integrate ensembles of local PCA analyses
in the diffusion-map framework to enable the detection of slow
variables in high-dimensional data arising from dynamic model
simulations. The proposed algorithm is built along the lines of the
nonlinear independent component analysis method recently intro-
duced in ref. 18. The approach takes into account the time depen-
dence of the data, whereas in the diffusion-map approach the
time labeling of the data points is not included. We demonstrate

our algorithm for stochastic simulators arising in the context of
chemical/biochemical reaction modeling.

Multiscale Chemical Reactions: A Toy Example
Consider the reversible chemical reaction [a dimerization, which
is a part of several biochemical mechanisms (19, 20)] involving two
molecular species X and Y ,

X + X
k1−→←−
k2

Y , [3]

where k1 and k2 are the forward and backward rate constants.
The probability that an additional molecule of type Y is produced
from two X molecules (respectively, two molecules of X produced
from one molecule of Y ) in an infinitesimally small time interval
[t, t +dt] is k1X (t)(X (t)−1)dt (respectively, k2Y (t)dt), where X (t)
and Y (t) are the number of molecules of type X and Y at time t
(21). The chemical reaction in Eq. 3 satisfies the stoichiometric
conservation law

X (t) + 2Y (t) = const, [4]

so that the state vector [X (t), Y (t)] is restricted to a line in the
phase plane. We now couple the chemical reaction in Eq. 3 with a
slow production of X molecules from an external source

∅ k3−→ X , [5]

where in Eq. 5 means that the probability of the external produc-
tion of an additional molecule of type X in an infinitesimally small
time interval [t, t + dt] is k3dt; the rate constants and the initial
state are chosen in such a way that the production process in Eq.
5 is much slower than the dimerization reactions in Eq. 3. This is
the case, for example, for the following choice of parameters:

X (0) = 100, Y (0) = 100, k1 = 1, k2 = 100, k3 = 50. [6]

The average time to produce an additional X molecule is k−1
3 =

0.02, whereas the average times for the forward and backward
dimerization are (k1X (0)(X(0) − 1))−1 ≈ 10−4 and (k2Y (0))−1 =
10−4. This finding implies that both X and Y are fast variables; yet
their linear combination X + 2Y is a slow variable. The conser-
vation law in Eq. 4 no longer holds since production was added.
Instead, X +2Y is slowly growing. To confirm this fact, we simulate
the time evolution of the pair [X (t), Y (t)] by using the Gillespie
stochastic simulation algorithm (SSA) (21). In Fig. 1, we plot the
time evolution of X , Y and X + 2Y .

This finding naturally leads to the following question: How does
one detect the slow variable X +2Y from data? A priori knowledge
that we seek a linear combination of the original variables lends
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Fig. 1. Toy example. The time evolution of X , Y and X + 2Y given by the stochastic simulation of the chemical system in Eqs. 3 and 5.

itself to fitting the coefficients of such a combination. Such fitting
is, however, not possible for the general nonlinear case.

Short Simulation Bursts
It is convenient to analyze our approach in the diffusion limit, for
which the simulation is well approximated by a stochastic differ-
ential equation (SDE). The chemical Langevin equation for the
time evolution of X and Y , which is formally derived from the
corresponding chemical master equation, is given in the Itô form
by refs. 22–24

dx = (2k2y − 2k1x(x − 1) + k3)dt

− 2
√

k1x(x − 1) dw1 + 2
√

k2y dw2 +
√

k3 dw3, [7]

dy = (k1x(x − 1) − k2y) dt

+
√

k1x(x − 1) dw1 − √
k2y dw2, [8]

where wi (i = 1, 2, 3) are standard independent Brownian motions.
The approximation in Eqs. 7 and 8 is also characterized by a time
scale separation and possesses the slow variable x+2y; multiplying
Eq. 8 by two and adding it to Eq. 7 gives

d(x + 2y) = k3 dt +
√

k3 dw3. [9]

Eq. 9 shows that the approximated stochastic dynamics of x + 2y
are decoupled from the individual dynamics of x and y, as expected
from Eqs. 3 and 4.

The Euler–Maruyama method for Eqs. 7 and 8 suggests that in a
time step Δt, the state vector [x(t), y(t)] propagates to the random
state vector [x(t + Δt), y(t + Δt)]

x(t + Δt) ≈ x(t) + (2k2y(t) − 2k1x(t)(x(t) − 1) + k3) Δt

− 2
√

(k1x(t)(x(t) − 1) + k2y(t)) Z1 +
√

k3 Z2,

y(t + Δt) ≈ y(t) + (k1x(t)(x(t) − 1) − k2y(t)) Δt

+
√

(k1x(t)(x(t) − 1) + k2y(t)) Z1,

where Z1, Z2 ∼ N (0, Δt) are independent, normally distributed
random variables with zero mean and variance Δt (Z1 and Z2 cor-
respond to the dw1 and dw2 terms, respectively, in Eqs. 7 and 8),
which means that if we were to run many simulations for a short
time step Δt, all starting at [x(t), y(t)], the trajectories would end
up at random locations forming a “point” cloud in the phase plane.
The point cloud has a bivariate normal distribution, whose center
is located at μ = [μx, μy]T , given by

μx = x(t) + (2k2y(t) − 2k1x(t)(x(t) − 1) + k3) Δt,
μy = y(t) + (k1x(t)(x(t) − 1) − k2y(t)) Δt,

and whose two-by-two covariance matrix Σ is

Σ = BBT ,

where

B = √
Δt

( −2
√

k1x(t)(x(t) − 1) + k2y(t)
√

k3√
k1x(t)(x(t) − 1) + k2y(t) 0

)
.

The shape of the point cloud is an ellipse because the level lines
of the probability density function

p(x, y) = 1

2π
√

det Σ
exp

{
−1

2
(x − μ)TΣ−1(x − μ)

}

are ellipses (x = [x, y]T ). When there is a separation of time scales,
the ellipses are thin and elongated. For example, for the set of para-
meters given in Eq. 6, the eigenvalues of Σ for [x, y] = [100, 100]
are σ2

1 ≈ 105Δt and σ2
2 ≈ 10Δt. These approximations mean that

the long axis of the ellipse is two orders of magnitude longer
than the short axis (σ1/σ2 ≈ 102). The eigenvector correspond-
ing to σ1 is approximately [−2, 1]T , pointing in the direction of the
fast dynamics on the line x + 2y = const. The second eigenvec-
tor is approximately [1, 2]T , pointing in the direction of the slow
dynamics.

The eigen-decomposition of the covariance matrix is simply
the PCA of the local point cloud generated by the short simu-
lation burst. We produce many short simulation bursts starting
at different initialization points [x, y]. For each burst, we perform
the PCA and estimate its covariance matrix Σ(x,y). The principal
components of Σ(x,y) are the local directions of the rapidly chang-
ing variables at [x, y], whereas components with small eigenvalues
correspond to the slow variables.

We wish to piece together the locally defined components into
globally consistent coordinates. The toy model in Eqs. 3–5 presents
no special difficulty because the principal components of Σ(x,y)
are approximately [−2, 1] and [1, 2] everywhere (independent of
[x, y]). In general, however, the slow variable may be some com-
plicated nonlinear function of the state variables. In such cases, it
is not trivial to find a globally consistent slow coordinate.

Anisotropic Diffusion Maps
To integrate the local information into global coordinates, we use
anisotropic diffusion maps (ADM), introduced in ref. 18. Sup-
pose u = u(x, y) = x + 2y (respectively, v = v(x, y) = −2x + y) are
the slowly changing (respectively, the rapidly changing variables).
Together, they define a map g : (x, y) 
→ (u, v) from the observable
state variables x and y to the “dynamically meaningful” coordinates
u and v. Alternatively, the inverse map f ≡ g−1 : (u, v) 
→ (x, y)
is given by x = x(u, v) and y = y(u, v). The point cloud in the
observable (x, y) plane, generated by the short bursts, is the image
under f of a similar point cloud in the inaccessible (u, v) plane.
The slow manifold (curve) in the (x, y) plane can be thought of
as the image of the u axis, f (u, 0) = [x(u, 0), y(u, 0)]. The ellipses
in the (u, v) plane are also thin and elongated, and they share an
important property: They all have the v axis as their long axis and
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the u axis as their short axis, due to the separation of time scales.
The ratio between the eigenvalues of Σ defines a small parameter
0 < τ2 � 1 that measures the time scale separation. In other
words, the change in u in a small time step Δt is typically τ times
smaller than the amount of change in v. The parameter τ = τ(u)
can also be a function of u, allowing the possibility of different
variability of the rapid dynamics for different values of u. This
possibility suggests the need to define the scaled variable vτ = τv.
This scaling contracts the elongated ellipse in the (u, v) plane into
a circle in the (u, vτ) plane.

Now that we have shown how to identify ellipses in the observ-
able (x, y) space that are images of circular disks in the inaccessible
(u, vτ) space, we are in position to use the result of ref. 18, which
relates the anisotropic graph Laplacian in the observable space
with the (isotropic) graph Laplacian in the inaccessible space. We
formulate our method in a general setting. Then we apply it to the
toy example.

The construction of the ADM is performed as follows. Suppose
x(i) ∈ R

M , i = 1, . . . , N , are N data points in an M-dimensional
data space. For every data point x(i) = [x(i)

1 , x(i)
2 , . . . , x(i)

M ], i =
1, . . . , N , we generate an ensemble of short simulation bursts ini-
tialized at the data point, i.e. x(0) ≡ [x1(0), x2(0), . . . , xM (0)] =
x(i). We collect the statistics of the simulated trajectories after

a short time period Δt. In particular, we compute the averaged
position μ(i) = [μ(i)

1 , . . . , μ(i)
M ]

μ
(i)
j =

〈
xj(Δt) | x(0) = x(i)

〉
, j = 1, . . . , M , [10]

and the elements of the covariance matrix

Σ(i) = {
σ

(i)
jk

}M
j,k=1

by

σ
(i)
jk = 1

Δt

[〈
xj(Δt) xk(Δt) | x(0) = x(i)〉 − μ

(i)
j μ

(i)
k

]
, [11]

where the notation 〈·〉 stands for statistical averaging over many
simulated trajectories. For each data point x(i), we calculate Σ(i)−1

,
the inverse of the covariance matrix. We define a symmetric
Σ-dependent squared distance between pairs of data points in
the observable space R

M

d2
Σ(x(i), x(j))

= 1
2

(x(i) − x(j))T
((

Σ(i)
)−1 +

(
Σ(j)

)−1
)

(x(i) − x(j)). [12]

Note that for the toy model in Eqs. 3–5 the distance dΣ is a second
order approximation of the Euclidean distance in the inaccessible
(u, vτ)-space

d2
Σ(x(i), x(j)) ≈ (u(i) − u(j))2 + τ2(v(i) − v(j))2. [13]

Because τ is a small parameter, dΣ is controlled by the difference
in the slow coordinate. The approximation in Eq. 13 is also valid
in higher dimensions, where there may be more than one slow
coordinate (u) and several fast coordinates (v) and the ellipse is
replaced by an ellipsoid. In such cases,

d2
Σ(x(i), x(j)) ≈ ‖u(i) − u(j)‖2 + τ2‖v(i) − v(j)‖2. [14]

Therefore, the ADM based on the “dynamic proximity” dS approx-
imates the Laplacian on the slow manifold. We construct an N ×N
weight matrix W

Wij = exp
{
−d2

Σ(x(i), x(j))
ε2

}
, [15]

where ε > 0 is the single parameter of the method. The elements
of the matrix W are all ≤1. Nearby points (i.e., their projection

on the slow manifold is close) have Wij close to 1, whereas distant
points have Wij close to 0. Next, we define a diagonal N × N nor-
malization matrix D whose values are given by the row sums of W

Dii =
N∑

k=1

Wik.

We then compute the eigenvalues and right eigenvectors of the
row stochastic matrix

A = D−1W, [16]

which can be viewed as a Markov transition probability matrix
for a jump process over the data points {x(i)}N

i=1. The discrete
jump process converges in the limit of N → ∞ and ε → 0 to
a continuous diffusion process over the observable data manifold.
The diffusion process is anisotropic due to the metric dΣ, so that
the diffusion coefficient changes with direction. Therefore, the
eigenvectors of A are discrete approximations of the continuous
eigenfunctions of the anisotropic differential diffusion genera-
tor over the observable manifold. The approximation in Eq. 14
implies that the long time behavior (t � τ) of the anisotropic dif-
fusion process over the observable manifold can be approximated
to leading order in τ as an isotropic diffusion process over the
slow u manifold. Equivalence of the long time behavior suggests
that the low-frequency eigenfunctions of the two diffusion gener-
ators are approximately equal. It follows that the eigenvectors of
A approximate the eigenfunctions of isotropic diffusion generator
(the Laplacian or the backward Fokker–Planck operator) over the
slow u manifold. These eigenfunctions are functions of the slow (u)
variables that do not depend on the fast (v) variables. Hence, the
low order eigenvectors of A give an approximate parametrization
of the slow manifold.

As discussed in refs. 12 and 25–27, the leading eigenvectors
may be used as a basis for a low-dimensional representation of
the data. To compute those eigenvectors, we use the fact that
A = D−1/2SD1/2 where S = D−1/2WD−1/2 is a symmetric matrix.
Hence, A and S are similar and thus have the same spectrum.
Because S is symmetric, it has a complete set of eigenvectors q j,
j = 0, . . . , N − 1, with corresponding eigenvalues

λ0 ≥ λ1 ≥ . . . ≥ λN−1. [17]

The right eigenvectors of A are given by

uj = D−1/2q j. [18]

Because A is a Markov matrix, all its eigenvalues are ≤1, with
largest eigenvalue λ0 = 1 and a corresponding trivial eigenvector
u0 = [1, 1, . . . , 1]. We define the low n-dimensional representation
of the state vectors by the following ADM

Ψn : x(i) → [
u(i)

1 , u(i)
2 , . . . , u(i)

n
]
; [19]

that is, the point x(i) is mapped to a vector containing the ith coor-
dinate of each of the first n leading eigenvectors of the matrix
A. The variables u(i)

1 , u(i)
2 , . . . , u(i)

n (which are defined on the data
points) are the candidate slow variables that we were looking for.

Application of ADM to the Toy Example

We use N = 2000 data points x(i) ≡ [x(i)
1 , x(i)

2 ] = [X (i), Y (i)],
i = 1, . . . , 2000, uniformly sampled from the illustrative trajec-
tory of Fig. 1 (in fact, the trajectory in Fig. 1 is visualized using
these 2000 data points). For every data point x(i) = [X (i), Y (i)],
i = 1, . . . , 2000, we run 107 replicas of stochastic simulations ini-
tialized at the data point for time Δt = 10−4. We estimate μ

(i)
j and

σ
(i)
jk , i = 1, . . . , 2000, j = 1, 2, k = 1, 2 by Eqs. 10 and 11 as an aver-

age over 107 realizations. For each data point x(i) = [X (i), Y (i)],
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Fig. 2. Toy example. (Left) The dataset with each point colored according to u1. (Center) Vector u1 as a function of X + 2Y . (Right) Vector u1 as a function
of X .

we also calculate the inverse covariance matrix and the symmetric
Σ-dependent squared distance d2

Σ(x(i), x(j)) by Eq. 12. We construct
a 2000 × 2000 weight matrix W by Eq. 15 for ε = 0.1 and a matrix
A by Eq. 16. We compute the leading eigenvectors uj of A by Eq.
18. In Fig. 2, we plot our dataset where the points are colored
according to the first nontrivial eigenvector u1. We see that the
eigenvector u1 gives a good description of slow dynamics of this
system. The slow dynamics are given by function X + 2Y as can
be seen in the Right frame of Fig. 1. The plot of u1 vs. X + 2Y is
shown in Center frame of Fig. 2. We again confirm that we obtained
a good slow description of the system. Finally, plotting the eigen-
vector u1 vs. X confirms that X is not a good slow variable (Right
frame of Fig. 2).

Here we used a simulation burst of 107 trajectories. The num-
ber of simulation “bursts” needed to construct a distance metric
based on the covariance in a high-dimensional system depends
on the dimensionality and the desired degree of approximation.
The central limit theorem suggests that the estimated covariance
matrix entries converge with the square-root number of simu-
lated trajectories. However, the convergence of the eigenvalues
and eigenvectors (principal components) of the covariance matrix
depends on the dimensionality M (see, e.g. ref. 28) as crossings of
eigenvalues may occur.

Oscillating “Half-Moons”
Next, consider the system of stochastic differential equations

du = a1 dt + a2 dw1, [20]
dv = a3(1 − v) dt + a4 dw2, [21]

where ai, i = 1, 2, 3, 4, are constants and ẇi, i = 1, 2 are
independent δ-correlated white noises (Wiener processes). We
consider Eqs. 20 and 21 together with the following nonlinear
transformation of variables

x = v cos(u + v − 1), y = v sin(u + v − 1). [22]

We will assume that the observables x and y are the actual observ-
ables, whereas u and v are unknown. We choose the values of
parameters as a1 = a2 = 10−3, a3 = a4 = 10−1. The illustrative
trajectory that starts at [x(0), y(0)] = [1, 0] is plotted in the Left
frame of Fig. 3. The trajectory is colored according to time. We
run simulations for a longer time 8×104, which accounts for about
12–13 rotations, and record 2000 data points at equidistant time
intervals of length 8 × 104/2000 = 40. This dataset is plotted in
the Center frame of Fig. 3. Again, points are colored according to
time. We clearly see that there is no correlation between time and
the slow variable (which is u MOD 2π) because of oscillations.

To apply the ADM, we run 106 replicas of stochastic simula-
tions initialized at each data point x(i) = [x(i), y(i)] for a time step
Δt = 0.1 and estimate μ

(i)
j and σ

(i)
jk , i = 1, . . . , 2000, j = 1, 2,

k = 1, 2 by Eqs. 10 and 11 as an average over 106 realizations.
For each data point x(i) = [x(i), y(i)], we also calculate the inverse
covariance matrix and the symmetric Σ-dependent squared dis-
tance d2

Σ(x(i), x(j)) by Eq. 12. Next, we have to choose the value of
parameter ε. To do that, we construct the ε-dependent 2000×2000
weight matrix W ≡ W(ε) by Eq. 15 for several values of ε. Then
we compute

L(ε) =
N∑

i=1

N∑
j=1

Wij(ε). [23]

The function L(ε) is plotted in the Right frame of Fig. 3 (it is a
log–log plot) (29). It clearly has two constant asymptotes when
ε → 0 and ε → ∞; as we expect, these asymptotes are smoothly
connected, by an approximately straight line of slope d in a log–
log plot, where d is the dimension of the slow manifold. Thus, the
log–log plot of L(ε) suggests to choose ε where the log–log graph
of L(ε) appears linear. We choose ε = 6. We form A (by Eq. 16)
and compute its few leading eigenvectors uj by Eq. 18. The first
nontrivial eigenvector u1 then describes the slow dynamics of the

Fig. 3. Oscillating half moons. The short illustrative trajectory of Eqs. 20–22 which starts at [x(0), y(0)] = [1, 0]. (Left) The trajectory is colored according to
time. The representative dataset sampled at equal time steps from a longer stochastic simulation. (Center) The points are colored according to time. (Right)
Plot of L(ε) given by Eq. 23.

Singer et al. PNAS September 22, 2009 vol. 106 no. 38 16093



Fig. 4. Oscillating half moons. (Left) The dataset with each point colored according to u1. (Center) Vector u1 as a function of x. (Right) Vector u1 as a function
of u MOD 2π.

system. The dataset (colored by the values of u1) is plotted in Fig. 4
(Left frame). We see that the ADM provides a good description of
the slow dynamics. Plotting u1 against the observable x confirms
that the latter is not a good observable (Center frame of Fig. 4).
The slow variable is given as a nonlinear transformation of x and y
which can be computed by inverting Eq. 22 locally. It is basically a
function of u MOD 2π. The eigenvector u1 is plotted against the
slow variable u MOD 2π in the Right frame of Fig. 4. We again
confirm that we recovered the slow dynamics correctly.

Inherently Nonlinear Chemical Reactions
We consider the following set of chemical reactions

X
k1−→ X + Z, Y + Z

k2−→ Y , [24]

∅ k3−→ Y , Y
k4−→ ∅, [25]

∅ k5−→ X . [26]

The first two reactions in Eq. 24 are production and degradation
of Z (catalyzed by X and Y , respectively). The production and
degradation of Z is assumed to be happening on a fast time scale.
The reactions in Eq. 25 are production and degradation of Y . They
are assumed to occur on an intermediate time scale (i.e. slower

than the fast time scale, but faster than the slow time scale). The
reaction in Eq. 26 is production of X , which is assumed to be slow.
We choose the values of the rate constants as

k1 = 1000, k2 = 1, k3 = 40, k4 = 1, k5 = 1. [27]

This choice of rate constants guarantees that the reactions in
Eq. 24 are the fastest, the reactions in Eq. 25 happen on a slower
time scale, and the reaction in Eq. 26 is the slowest. The model in
Eqs. 24–26 is approximated by the ODE system for the O(1) vari-
ables x = X/100, y = Y/40 and z = Z/2500 as follows: dx/dt =
k5/100, dy/dt = k3/40 − k4y, dz/dt = 100k1x/2500 − 40k2yz. By
using the parameter values in Eq. 27, we obtain dx/dt = x/100,
dy/dt = 1 − y, dz/dt = 40(x − yz). The quasiequilibrium approx-
imation in the z equation (fastest) is z = x/y, which gives rise
to the “half-moon shaped” profile (hyperbola + noise) dynam-
ics in the Y -Z plane. The variable y changes on a faster time
scale than x. Roughly speaking, the fluctuations in y lead to the
dynamics in z according to the formula z = x/y, where x changes
very slowly, as illustrated in Fig. 5. We initialize the system at
[X (0), Y (0), Z(0)] = [100, 40, 2500] and simulate the time evo-
lution using the Gillespie stochastic simulation algorithm. Fig. 5
shows the time evolution of X (Upper Left frame), Y (Upper Center
frame), and Z (Upper Right frame). The same trajectory plotted
in the Y -Z plane is given in the Lower frames of Fig. 5. We plot

Fig. 5. Inherently nonlinear chemical reactions. (Upper) The time evolution of X (Upper Left), Y (Upper Center) and Z (Upper Right) given by the stochastic
simulation of the chemical system in Eqs. 24–26. The same trajectory (2000 data points, saved at equal time intervals Δt = 0.05 apart) plotted in the Y -Z plane
is shown in the lower frames. (Lower) We color the points according to time (Lower Left) and according to the number of X molecules (Lower Center). To
emphasize the strength of our approach, we randomize the order of the data points – we color the resulting data set according to the order in the new list
(Lower Right).
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Fig. 6. Inherently nonlinear chemical reactions. (Left) The dataset in the Y -Z plane with each point colored according to u1. (Center) Vector u1 as a function
of X . (Right) Vector u1 as a function of Y .

2000 data points lying on this trajectory colored by time (Lower
Left frame). In the Lower Center frame of Fig. 5, we provide the
similar Y -Z plot where the data points are colored according to
the value of X .

The set of 2000 data points (plotted in the Lower Right frame of
the Fig. 5) is the input of the diffusion-map approach. To empha-
size the strength of our approach, the data points are ordered
randomly in the inputting dataset. In our model, the slow vari-
able X is a nondecreasing function of time t (see Fig. 5 Upper
Left frame). Consequently, the dataset recorded from the stochas-
tic simulation is ordered according to the slow variable. In more
complicated chemical examples [e.g. problems with oscillations
(30)], or the oscillating half-moons from the previous example,
there is no obvious relation between the “dynamic proximity”
of data points and the order in which they are recorded. Our
approach works in more complicated situations because the ADM
is independent of the order of the inputting data points.

We use short bursts of time Δt = 5×10−4 (which correspond to
approximately 100 Gillespie SSA time steps) of stochastic sim-
ulations initialized at the N = 2000 data points from Fig. 5
(Lower Right frame). For every data point X (i) = [X (i), Y (i), Z(i)],
i = 1, . . . , N , we run 106 replicas of stochastic simulations ini-
tialized at the data point to estimate the covariance matrix Σ(i).
We use ε = 1. In the Right frame of Fig. 6, we plot our dataset
[given in Fig. 5 (Lower Right frame)] and we color the data
points according to the first nontrivial eigenvector u1. We see that
the eigenvector u1 gives a good description of slow dynamics of

the system in Eqs. 24–26. The slow dynamics can be described by
the variable X , as can be seen in the Upper Left frame of Fig. 5. The
plot of u1 vs. X is shown in the Center frame of Fig. 6. We again
confirm that we obtained a good description of the slow dynamics
of the system. Finally, plotting the eigenvector u1 vs. Y confirms
that Y is not a good slow variable (Right frame of Fig. 6).

Summary
Finding a reduced model for dynamical systems with a large num-
ber of degrees of freedom is of great importance in many fields.
Dimensional reduction methods often use similarity measures
between different states of the dynamical system to reveal its
low-dimensional structure. Those methods are limited when the
similarity measure does not take into account the time-labeling
of the states. We encode the time dependence into an anisotropic
similarity measure by using short bursts of local simulations. The
resulting leading eigenvectors of the anisotropic diffusion map
approximate the eigenfunctions of the Laplacian over the mani-
fold corresponding to the dynamically meaningful slowly varying
coordinates. We demonstrated the usefulness of the ADM in ana-
lyzing dynamical systems by its successful recovery of meaningful
coordinates in the particular case of multiscale chemical reactions.
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